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The goal of this effort was to provide a unified probabilistic framework that integrates symbolic
and sensory reasoning. Such a framework would allow sensor data to be analyzed in terms of
high-level symbolic models. It will also allow the results of high-level analysis to guide the low-level
sensor interpretation task and to help in resolving ambiguities in the sensor data. Our approach
was based on the framework of probabilistic graphical models, which allows us to build systems
that learn and reason with complex models, encompassing both low-level continuous sensor data
and high-level symbolic concepts.

The award spanned five years of work, and therefore covered a range of activities related to
this overall goal. Below we summarize our accomplishments for each of these activities, proceeding
roughly in chronological order.

1 Hybrid and Temporal Bayesian Networks

In one thrust, we developed fundamental methods for reasoning in probabilistic graphical models.
Our focus was on extending the capabilities of these models in two directions that we viewed as
critical to the project direction: models that represent processes that evolve over time, and models
that involve both discrete and continmous variables.

1.1 Temporal Models

When tracking a complex high-dimensional system, we must keep track of a distribution over an
exponentially large state space. In [7, 5], we showed that, in compound systems composed of
interacting subsystems, the correlations between the state of different subsystems can be quite
weak. Thus, we can often provide a high-quality approximation to a complex belief state by
approximating the distribution using simpler factors, e.g., independent marginals over subsystem
states. The main advantage of this approach is the ability to keep many distinct hypotheses in a
compact representation.

In a parallel effort [6, 4], we considered the problem of efficiently learning temporal probabilistic
models from partially observable data. This task was important for the project, as many variables
(particularly symbolic ones such as intention) are rarely observed. It is also a very difficult task from
a computational perspective. We have investigated both the problem of parameter learning and of
learning model structure — the dependence of one variable on others — from partially observable
data. Building on some of our previous work, we have substantially improved the performance of
algorithms for these task. We have also shown how these techniques can be applied online, as the
model is being used to track the world. We also showed promising results on the very challenging
problem of inducing the existence of hidden variables automatically from the data.
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Figure 1: Sample experimental results for approximate tracking algorithm: (a) relative entropy
error of approximate tracking algorithm for a typical run using a freeway driving network; (b)
comparison of relative entropy error for three different approximate belief state representations;
the speedup in running time is approximately a factor of 30.

1.2 Hybrid Models

Up to a few years ago, most work on probabilistic graphical models has focused on representing
distributions involving only discrete or only continuous variables. A large component of our effort
focused on extending this framework to allow representation and reasoning with a rich class of
models involving both discrete and continuous variables, and dependencies between them. Our
work on this topic resulted in several contributions.

1.2.1 Anytime Inference in CLG Networks

We first studied the important case of conditional linear Gaussian (CLG) networks, where the
continious nodes all have linear Gaussian models, and discrete nodes cannot have continuous
parents. Under these conditions, the conditional distribution of the continuous variables given the
discrete ones is a multivariate Gaussian, and the distribution as a whole is an exponentially large
mixture of Gaussians.

There are known algorithms for inference in such networks, which are very similar in spirit to
inference algorithms for discrete networks. Thus, there was a common perception that inference
in CLG networks was “about the same” as inference in discrete networks. In [9], we proved that
this perception is false: Even for network structures for which inference in the discrete case is very
easy (linear time), inference for CLGs can still be NP-hard. In particular, we showed that even in
an extremely simple class of CLGs, where the network structure is a polytree and every continuous
variable has at most one (binary) discrete ancestor, inference is NP-hard. An even more surprising
result shows that, unless P=NP, there does not exist a polynomial time approximate inference
algorithm with absolute error smaller than 0.5. It is important to note that these results also apply
to the popular model of Switching Kalman Filters; thus, we provided the first formal complexity
results for this important class of models.

Given that inference for very simple CLGs is NP-hard, and that even approximate inference is
not tractable, one might conclude that inference in CLG models is a lost cause. Fortunately, many
real life domains have special features which can be exploited by efficient algorithms. Specifically,
it is often the case that a relatively small subset of Gaussians is a good approximation for the entire
mixture. In models of physical systems, scenarios involving multiple simultaneous faults are very
unlikely. In physical tracking domains, hypothesis involving very frequent changes in destination or
activity are rare. Qur key idea is to consider the unlikely hypotheses only if the likely hypotheses
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Figure 2: Results of various hypothesis enumeration algorithms on random networks (a) L1 norm
to correct distribution (b) Percentage of runs where the most likely hypothesis generated by the
algorithm is one of the three most likely assignments.

fail to explain the evidence. Our algorithm works by enumerating the assignments to the discrete
variables in decreasing order of prior likelihood.! The cost of this algorithm grows with the cost of -
inference on the discrete part of the model, which is, in almost all cases, significantly easier than
inference over the hybrid model.

1.2.2 Nonlinear models

In a second direction, we relaxed the very strong restriction to CLG networks, which assumes linear
dynamics, and disallows dependencies of discrete variables on continuous ones.

In one direction [8], we considered the case of nonlinear continuous dynamics. Unlike many
standard approaches, we did not linearize the dynamics. Rather, given a nonlinear dependence
of a variable X on its parents Yj,...,Y:, we generate the joint distribution over X,Y;,..., Y,
and then use numerical integration techniques to find a good Gaussian approximation to this joint
distribution by computing the relevant expectations. The dimensionality of the integrals involved
is k. In practice, the structure of the BN representation results in fairly localized dependencies, so
that k is quite small. Qur results [8] show that this method is highly effective, and significantly
more accurate (per time spent) than other approaches.

A second type of nonlinear dynamics is induced by the dependencies of discrete variables on
continuous ones. Unfortunately, there is no exact inference algorithm known for such networks.
One can always resort to the use of approximate inference, such as discretization or sampling,
but these approaches have some serious limitations. It is often hard to find a good discretization:
Sometimes any reasonable discretization demands too fine a resolution, and often requires the
handling of intractable intermediate factors (especially in high dimensions). The convergence of
sampling algorithms can be quite slow, and is very sensitive to the network parameters and the
configuration of the evidence.

Note that, when applying this algorithm to a dynamic problem, this prior likelihood will depend on evidence
obtained in previous time steps, and hence will be a fairly good indicator.
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Figure 3: Comparison of our approach to non-linear CPDs with Likelihood Weighting. The error
of our algorithm on the Price query is 0.

In [11], we developed the first “exact” algorithm for the class of augmented CLG networks,
which are networks where the continous variables have a CLG model (as described above), but
that allow a logistic (softmax) dependency of the discrete variables on the continuous ones. Our
algorithm is based on the simple idea of approximating the product of a Gaussian and a softmax
as a Gaussian, where we construct the approximation using numerical integration. We show how
we can embed this approach within the general framework of Lauritzen’s algorithm for inference
in standard CLG networks. The resulting algorithm is quite simple, and often comparable in its
complexity to Lauritzen’s original algorithm. Our algorithm is exact in a sense that is analogous
to Lauritzen’s algorithm: It computes the exact distributions over the discrete nodes, and the
exact first and second moments of the continuous ones, up to inaccuracies resulting from numerical
integration used within the algorithm.

1.2.3 Dealing with the temporal blowup

The techniques described above allow us to do inference in a static network. We then proceeded
to use this algorithm as a key subroutine in a dynamic tracking algorithm. Given a mixture
distribution that approximates our belief state at time ¢, we can use it to generate a new mixture
distribution that approximates our belief state at time t+1. However, we cannot afford to propagate
every mixture component into time £+2, as that would exponentially increase the size of the mixture
over time, and therefore we need to reduce the size of the mixture. The problem is that it is very
difficult to determine which hypotheses to keep for complex systems. Naively, we would choose
to keep the most likely hypotheses and remove the others. However, sometimes a crucial piece of
information is not manifested until several time steps after the hypotheses are pruned. The danger
is that, without supporting evidence, the correct hypothesis would be removed from our belief state.

Our approach to dealing with this problem, as described in [10], has three components. We
first use an algorithm that collapses similar hypotheses into a single hypothesis. This algorithm
is combined with a novel approximate smoothing algorithm that we use to improve our ability to
find the more likely hypotheses. Finally, we combine our techniques with a decomposition method
based on our earlier work for discrete networks [7] that allows the tracking of very large systems
that involve many possible failures in different components.




Our collapsing algorithm is based on the observation that, among the likely hypotheses, we
often have very similar ones. For example, hypotheses which correspond to measurement faults 20
steps ago and 21 steps ago would often be almost identical. Instead of keeping similar hypotheses in
our belief state we can collapse them into one and use the remaining slots to keep other, distinctly
different, hypotheses. The main question is the choice of which hypotheses to collapse. We provide
a novel approach that takes into consideration both the likelihood of the different hypotheses and
their similarity to each other.

Hypothesis collapsing is a myopic method; it only uses evidence observed up to time £. As
discussed above, in some cases the likelihood of the corrent hypothesis only increases after a certain
delay. As our approach is more likely to collapse hypotheses that are currently unlikely, the correct
hypothesis might be lost before it has a chance to reveal itself. The obvious solution to the problem
is to pick the likely hypotheses based not only on past and present evidence but also on future
evidence. However, to do so, we must first propagate a belief state forward in time, and this is the
very problem we are trying to solve. We break this cycle by using a simpler method of collapsing
hypotheses, and then performing a backward propagation process only for the hypothesis weights.
We use the more informed hypothesis weights as the basis for our collapsing algorithm.

Finally, none of these approaches are sufficient to deal with very complex high-dimensional
systems. In this case, the number of hypotheses required to appropriately represent the belief state
can grow extremely large. We use a continuous extension to our work in [7, 5], to represent the
belief state as a combination of simpler factors over subsystem states.

1.3 Application to Diagnosis

We tested our methods on a complex real-world task involving both discrete and continous variables.
This task was the diagnosis of a real system constructed by NASA. The system, called RWGS
(Reverse Water Gas Shift), converts carbon dioxide and hydrogen into oxygen, for the purpose of
eventually making fuel on Mars. The diagnosis task involves both discrete variables, corresponding
to different types of component failures, and continous ones, representing the (hidden) system state
and the sensor measurements.

The RWGS presents a number of significant modeling and algorithmic challenges. From a
modeling perspective, the system is very complex, and contains many subtle phenomena that
are difficult to model accurately. Various phenomena in the system manifest themselves over
dramatically different time scales, ranging from pressure waves that propogate in a time scale of
milliseconds to slow changes such as gas composition that take hours to evolve. From a tracking
perspective, the system dynamics are complex and highly nonlinear. Furthermore, the sensors give
only a limited view of the system state. Some key quantities of the system are not measured, and
the available sensors are noisy and biased, with both the noise level and the bias varying with the
system state.

We constructed a probabilistic graphical model for this problem, where the state at each time
point is represented by 8 discrete and 176 continuous variables. We showed [8] how the methods
developed in our work allow us to deal effectively with the challenges involved in such a system. In
addition to the contributions described above, we also showed how to use a fixed-point computation
to deal with effects that develop at different time scales, specifically rapid changes occurring during
slowly changing processes. Our results showed the ability of our methods both to track the continous
state of the system, and to provide accurate conclusions regarding the hidden discrete state of the
system (the underlying failure modes).
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Figure 5: Heater shutdown scenario: likelihood of heater shutdown for (a) our algorithm, (b)
Different runs of the sampling-based Rao-Blackwellized Particle Filtering algorithm. The actual
shutdown occurs at time step 11.
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(b) FastSLAM 2.0, M=1 particle

Figure 6: FastSLAM 2.0 algorithm applied to the Victoria Park benchmark data set using only a
single particle. The accuracy of the recovered path and the resulting map is indistinguishable from
that the best EKF-style methods and the original FastSLAM algorithm with M =100 particles.

2 Symbolic Maps of Physical Environments

In the second phase of the project, we focused on the goal of constructing a symbolic map of an
unknown environment from raw robot sensor data. For example, consider a robot scanning an
office environment. It will observe several objects such as desks, monitors, chairs and people. An
ultimate goal would be to recognize and segment out the objects in the office, creating a map
containing symbolic descriptions such as “this is a chair next to the door.” To do so, we need
to deal with some key problems, involving basic mapping in unknown environments, constructing
maps at the object level, and building shape models of physical objects. In collaboration with
Professor Sebastian Thrun (who has recently moved from Carnegie Mellon University to Stanford),
we have explored these three important problems.

2.1 SLAM

Our first focus was on the SLAM task — Simultaneous Localization And Mapping — mapping an
unknown environment using a robot whose trajectory through the environment is also unknown.
This problem is a key problem in robotics, and is a critical component in any system that tackles the
mapping problem in a real-world setting. We explored several different approaches to this problem,
all based on our main research theme of exploiting the structured representation of probabilistic
graphical models.

One of our proposed algorithms [12, 13] exploits important independence structure in the SLAM
problem: the fact that the landmark positions are conditionally independent given the robot’s
motion path. We use particle filtering methods to sample the robot’s path, and then a set of low-
dimensional extended Kalman filters to represent our beliefs regarding the position of each landmark
given each robot’s path. This method allows the SLAM problem to be solved for significantly larger
and more complex environments than have been addressed so far. Moreover, it can be extended
to provide a new solution to the data association problem, where the robot is uncertain about
which landmark in the environment it is sensing. In real environments, it is rarely the case that
landmarks are always uniquely identifiable, so that algorithms that address this problem are of



practical importance. We prove convergence of this new algorithm for linear SLAM problems and
provide real-world experimental results that illustrate an order of magnitude improvement over
other solutions to SLAM.

In a different algorithm focused on solving the linear SLAM problem in very high-dimensional
spaces [14], we employ techniques that are very similar to our early work on tracking in discrete
systems [7]. This method represents our belief state — the distribution over the current map and
robot pose — using a probabilistic graphical model that shows the correlations in our beliefs about
the positions of different landmarks. Over time, the network becomes densely connected, so that
we approximate the belief state by ignoring weak correlations between the landmarks. We show
that the different update steps in this algorithm can be executed (approximately) in constant time,
irrespective of the size of the map. We also provide empirical results obtained for a benchmark
data. set collected .in an outdoor environment, and using a multi-robot mapping simulation.

2.2 Object-Based Maps

A second direction concerns the task of segmentation (in conjunction with learning): identifying
which objects the sensor data came from, and (simultaneously) learning the object properties. We
extended existing robot mapping techniques by incorporating the notions of objects and classes
into the learning framework. Such modeling allows us to naturally prefer models in which objects
of the same class have similar properties, and leverages generalization and prediction.

As a first step [1], we implemented a system learning 2D maps of office environments with
two kinds of objects (walls and doors) from real laser scanner and camera robot data. The original
model encodes general knowledge such as “doors open and close over time while walls remain static”
and “doors usually share width and orientation”, and is optimized by a novel instance of the EM
algorithm which yields a map in terms of 2D segments corresponding to doors and walls. Our
experiments demonstrate the use of object property generalization and prediction. Even though
we originally don’t know how walls and doors look in a particular environment, our method finds
a few doors based on their motion, then generalizes from the newly acquired color information to
find doors that never moved at all.

2.3 3D Shape Models

Our final direction addresses the problem of constructing 3D models for the shapes of complex
objects, specifically objects whose shape is not static. We view the ability to model shape variation
both as necessary in itself, in order to deal with objects such as people or chairs, and as a key
building block in constructing class-based models of 3D objects (where shape variability is almost
always the case).

In the context of this project, we have made significant progress on two tasks. In the first (3],
we developed an unsupervised algorithm for registering 3D surface scans of an object undergoing
significant deformations. Our algorithm does not use markers, nor does it assume prior knowledge
about object shape, the dynamics of its deformation, or scan alignment. The algorithm regis-
ters two meshes by optimizing a joint probabilistic model over all point-to-point correspondences
between them. This model enforces preservation of local mesh geometry, as well as more global
constraints that capture the preservation of geodesic distance betweencorresponding point pairs.
The algorithm applies even when one of the meshes is an incomplete range scan; thus, it can be
used to automatically fill in the remaining surfaces for this partial scan, even if those surfaces were
previously only seen in a different configuration. We evaluated the algorithm on several real-world



Figure 7: Sample results from our unsupervised correspondence algorithm. (2A) Automatic inter-
polation between two scans of an arm and a wooden puppet. (2B) Registration results on two scans
of the same man sitting and standing up (select points were displayed) (2C) Registration results
on scans of a larger man and a smaller woman. The algorithm is robust to small changes in object
scale.

datasets, and demonstrated good results in the presence of significant movement of articulated
parts and non-rigid surface deformation.

In our second task [2], we considered the task of automatically determining the decomposition
of an articulate object into its constituent approximately rigid parts. The input of our algorithm is
a set of meshes corresponding to different configurations of an articulated object, registered using
the algorithm described above. Our algorithm automatically recovers the part decomposition, the
location of the parts in the different object instances, and the articulated object skeleton linking
the parts. Qur algorithm segments the mesh surfaces using a graphical model that captures the
spatial contiguity of parts. The segmentation is done using the EM algorithm, iterating between
finding a decomposition of the object into rigid parts, and finding the location of the parts in the
object instances. Although the graphical model is densely connected, the object decomposition
step can be performed optimally and efficiently, allowing us to identify a large number of object
parts while avoiding local maxima.
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